Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and Temperature-Controlled Aging Treatment

Por um escritor misterioso

Descrição

Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
Effect of spatial period on surface wettability and stability of
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
Short and long term surface chemistry and wetting behaviour of
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
Bionic eco-friendly synergic anti-scaling Cu-Zn-CeO2 coating on
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
Wrinkled, Dual-Scale Structures of Diamond-Like Carbon (DLC) for
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
WCA dependence on the number of laser shots ablated on the surface
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
Wrinkled, Dual-Scale Structures of Diamond-Like Carbon (DLC) for
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
Bionic eco-friendly synergic anti-scaling Cu-Zn-CeO2 coating on
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
Synthesis of Sulfoximines by Copper-Catalyzed Oxidative Coupling
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
Wrinkled, Dual-Scale Structures of Diamond-Like Carbon (DLC) for
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
Synthesis of Sulfoximines by Copper-Catalyzed Oxidative Coupling
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
Synthesis of Sulfoximines by Copper-Catalyzed Oxidative Coupling
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
Schematic diagram shows flotation cell and adsorption of
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
Demonstration of an Enhanced “Interconnect Topology”-Based
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
Recurrent Filmwise and Dropwise Condensation on a Beetle Mimetic
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
Superhydrophobic and superhydrophilic properties of laser-ablated
de por adulto (o preço varia de acordo com o tamanho do grupo)